Parkinson Disease Classification using

نویسندگان

  • Geetha Ramani
  • G. Sivagami
چکیده

Knowledge discovery in databases has established its success rate in various prominent fields such as e-business, marketing, retail and medical. Medical data mining has great potency for exploring the out of sight patterns in the respective medical data sets. This paper intends to provide a survey of current techniques of knowledge discovery in databases using data mining techniques that are in use today for the classification of Parkinson Disease. Parkinson Disease is a chronic malady of the central nervous system where the key indications can be captivated from the Mentation, Activities of Daily Life (ADL), Motor Examination and Complications of Therapy. The speech symptom which is an ADL is a common ground for the progress of the disease. The dataset for the disease is acquired from UCI, an online repository of large data sets. A comparative study on different classification methods is carried out to this dataset by applying the feature relevance analysis and the Accuracy Analysis to come up with the best classification rule. Also the intention is to sieve the data such that the healthy and people with Parkinson will be correctly classified. General Terms Data Mining, Healthcare Data, Parkinson Disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Parkinson’s Disease in Human Using Voice Signals

A full investigation into the features extracted from voice signals of people with and without Parkinson’s disease was performed. A total of 31 people with and without the disease participated in the data collection phase. Their voice signals were recorded and processed. The relevant features were then extracted. A variety of feature selection methods have been utilized resulting in a good perf...

متن کامل

Quantification of Parkinson Tremor Intensity Based On EMG Signal Analysis Using Fast Orthogonal Search Algorithm

The tremor injury is one of the common symptoms of Parkinson's disease. The patients suffering from Parkinson's disease have difficulty in controlling their movements owing to tremor. The intensity of the disease can be determined through specifying the range of intensity values of involuntary tremor in Parkinson patients. The level of disease in patients is determined through an empirical rang...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011